skip to main content


Search for: All records

Creators/Authors contains: "Chen, Mingshui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Here we report the expression of programmed cell death ligand 1/2 (PD‐L1/L2) in breast and colon cancer stem cells (CSCs). The stemness of these cells was confirmed by their surface markers. Using flow cytometry analysis we demonstrated thatPD‐L1 expression was higher inCSCs of both cancers compared to non‐stem like cancer cells. Consistent with this, detection of cellularPD‐L1 proteins by western blot assay also showed increasedPD‐L1 protein inCSCs. In contrast, only trace amounts ofPD‐L2 were detected inCSCs of both cancers. Our results suggest that breast and colon cancers may be sensitive toPD1/PD‐L1 immunotherapy and thus warrant further investigations ofCSCtargetedPD1/PD‐L1 therapy.

     
    more » « less
  2. Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses. 
    more » « less